sudo users

Mark Bools
December 10, 2020

Last Modified: February 25, 2021

Abstract

Protecting your system from accidental or malicious change is made
simpler by allowing users only limited access. . This especially means
limiting users who have root or ‘superuser’ access as these users have
effectively unlimited power. When it is necessary for a user to have this
access it is best that they have a normal (unprivileged) account for day-
to-day activities with the ability to temporarily promote themselves to
‘superuser’ to run commands that require this elevated access.

First, some basics of Linux access control.

Linux accounts all have two basic identities that the operating system uses
to control access to facilities like which files the account holder can access and
what programs the user can execute; the user id (uid) and the group id (gid).
You can easily see the uid and gid for an account using the id command.

bash

1 id vagrant

This will show the vagrant account’s current uid and gid along with a list
of ‘groups’ to which that account belongs.

1 uid=1000(vagrant) gid=1000(vagrant) >
¢ groups=1000(vagrant) ,24 (cdrom) ,25(floppy) ,27 (sudo) ,29 (audio) ,30(dip) ,44(video) ,46 (plug

Issuing the command id without specifing a username will return these
details for the current account.

What does this all mean?

Access to files is specified on three axes; user, group, and other. For each
axis we can specify read access, write access, and execute access. All of this
information can be seen using the 1s command.

bash

1 1ls -1

1 total 64

2 drwxr-xr-x 7 vagrant vagrant 4096 Nov 18 15:33 .

3 drwxr-xr-x 37 vagrant vagrant 4096 Dec 3 09:01 ..

4 -rw-r--r-- 1 vagrant vagrant 419 Nov 18 09:23 404.html

5 -rw-r--r-- 1 vagrant vagrant 412 Nov 18 09:23 >
¢ about.markdown

6 drwxr-xr-x 3 vagrant vagrant 4096 Nov 18 09:23 assets

7 -rw-r--r-- 1 vagrant vagrant 672 Nov 18 09:23 >
“ books.markdown

g8 -rw-r--r-- 1 vagrant vagrant 2352 Nov 18 09:23 >
- _config.yml

9 -rw-r--r-- 1 vagrant vagrant 1131 Nov 18 09:23 Gemfile

10 -rw-r--r-- 1 vagrant vagrant 1869 Nov 18 09:23 >

¢ Gemfile.lock

11 drwxr-xr-x 8 vagrant vagrant 4096 Nov 18 15:33 .git

12 -rw-r--r-- 1 vagrant vagrant 56 Oct 10 13:36 >
~ .gitignore

13 drwxr-xr-x 2 vagrant vagrant 4096 Nov 18 09:23 _includes

14 -rw-r--r-- 1 vagrant vagrant 178 Nov 18 09:23 >
¢ index.markdown

15 drwxr-xr-x 3 vagrant vagrant 4096 Oct 10 13:41 >
“ .jekyll-cache

16 -rw-r--r-- 1 vagrant vagrant 629 Nov 18 09:23 >

- saltyvagrant.markdown
17 drwxr-xr-x 4 vagrant vagrant 4096 Nov 18 09:23 _sass§

Looking at line 3 we see that the 404.html file has its access ‘mode’ set
to -rw-r--r-=-We read the first character as a special indicator (the first, in
this example -, meaning ‘not set’). The remaining nine indicators are read in
groups-of three. Each group contains; r read, w write, x execute, or - for ‘not
set’. The three groups represent owner, group, and other.

Reading the 404.html file mode (-rw-r--r--) we see; special is not set
(-), user (vagrant as'indicated by the entry in the third column of output)
can read and write but not execute (rw-), Any account in the group (vagrant
as indicated by the entry in the fourth column of output) can read this file but
can neither write not execute it (r--). The final three entries show that any
account on the machine can read but neither write nor execute it (r--).

Looking at line 5 we see that assets is a directory, indicated by the d special
indicator (the first character on the line). User vagrant can read, write, and
execute the assets directory. What does ‘execute’ mean on a directory? Any
account with execute access x can list the directory content (in this example
any account can list the assets directory content as indicated by the x in the
final position).

Under normal circumstances only the account vagrant would be able to
add a file to the assets directry or make changes (write) to the 404.html file.

Superusers however are above these restrictions and are able to do aything they
please to these files.

Who are superusers?

The special root account is always a superuser. Generally it is good practice
though to prevent direct login access to the root account. Instead we provide
non-privileged accounts with a way to run privileged commands but only when
some special action is taken. This need to take some special action to run
commands as a superuser will (hopefully) reduce the potential for mistakes.

The special action required is called sudo, short for superuser do. This is a
special command, normally used as a prefix to whatever command we want to
run with superuser privilege.

Why is it bad practice to allow direct login access to root but instead use
sudo? Four reasons;

1. Using sudo requires an explicit action to perform privileged actions (ac-
tions that may have significant effects on your system).

2. All sudo actions are logged, making it simpler to find who actually per-
formed each privileged action.

3. sudo actions can be controlled such that the account may run only certain
commands with superuser rights.

4. The right to run sudo commands can be granted and revoked very simply.

Logged in to the non-privileged account vagrant we can look at 1s -1 /etc/hosts,
the local hosts file.

1 -Trw-r--r-- 1 root root 254 Oct 14 13:39 /etc/hosts

This tells us that only the root user has write access to this file. Suppose
the vagrant user needs to edit this file.

First we need to tell the operating system that vagrant is allowed to run
elevated commands using sudo. This is very simple, the vagrant account must
be added to the sudo group. Typically, any account that is a member of this
sudo group is permitted to run the sudo command, and by extension is allowed
to run commands as a superuser. [say ‘typically’ because the sudo facility
allows much more subtle configuration of what each account or group may
do. We could, for example, create a group reboot that would allow member
of the group to issue a command to reboot the server but have access to no
other privileged operation. Similarly, we could change the sudo group to allow
limited access, but as I say, it is more common to leave sudo as all powerful
and create other more specialised groups as required.

As it happens our vagrant account is already a member of the sudo group
(we can see this in the output of the id vagrant command shown above).

If the vagrant account was not already a member of this group we could add
it using the command usermod -g -G sudo vagrant. As you might expect

this command requires superuser privilege (otherwise any account would be
able to add itself to the sudo group, making a mockery of our security). So the
command we want is sudo usermod -g -G sudo vagrant run by an account
that is already a member of the sudo group (alternatively we could use the
root account without using sudo but as we said above, direct login access to
the root account is to be avoided). The obvious point here being that when
we initially set up our system to use sudo we must have at least one account
as a member of the sudo group.

bash
1 sudo vi /etc/hosts

Prefixing the edit comand with sudo allows the account to edit the file
regardless of the normal access rights on the file.

