
DRAFT

DevOps from Scratch
(Technical Support)

Mark Bools

November 14, 2020

Document ID: A000000001
Last Modified: 2022-01-25

DRAFT

DRAFT
Contents

Contents iii

1 How to. . . 1
1.1 . . . read this book . 1
1.2 . . . get the most from this book 2
1.3 . . .manage your workspace . 2

2 Setting Up Your Environment 7
2.1 VirtualBox . 7
2.2 Vagrant . 7
2.3 git . 8
2.4 Installing the host tools . 8

3 Our Starting Point 9
3.1 Ideation . 9

4 DevOps from 20,000 feet 11
4.1 The DevOps Infinite Cycle . 12

5 Virtualisation 15
5.1 Creating a Virtual Server with VBoxManage 15
5.2 Setting up a simple virtual machine 15
5.3 And now the easy way . 18

6 Infrastructure as Code 21
6.1 Less Talk, More Do! . 22
6.2 What about the data? . 26

7 The Master Server 27
7.1 Preliminaries . 27
7.2 Base server and operating system 27
7.3 Vagrant SSH . 29
7.4 What versus How . 32
7.5 Our core configuration tool . 34
7.6 Something is missing? . 40

8 Master Server Requirements—round one 41
8.1 What are requirements for? . 42
8.2 Uses of requirements . 43

iii

DRAFT

iv CONTENTS

8.3 How to capture our requirements 44
8.4 Starting a conversation . 45
8.5 Testable requirements . 46

9 Requirements 47

10 Testing First 49
10.1 The Purpose of Testing . 49

11 Security First 51
11.1 Risk . 51

12 Firewall 53
12.1 What is a firewall? . 53
12.2 What does a firewall do? . 54

13 Repositories 55

14 Managing Data 57

Bibliography 59

A Brief History of “devops” 61

Index 63

DRAFT
Chapter 1

How to. . .

This chapter offers some guidance on getting the most from this book.

1.1 . . . read this book

If I was being flippant I might say, “with your eyes” but I’m bigger than that
so instead I will suggest some ways you might use this material.

This book is organised as a single narrative course centred around the tech-
nology that supports DevOps. If you start on page one, read through each
page and follow along with all the material, you should end up being proficient
with the entire IT System Lifecycle Management.

This book contains mistakes. Deliberate mistakes (and no doubt some
mistakes that I did not intend, that’s life). Sometimes we will do things more
than once. WTF? In most educational material we are presented with ‘perfect’
solutions, this is not realistic. The real world sucks. It changes constantly and
today’s ideal solution is okay but tomorrow the boss (or customer) decides new
technology is desirable how do we handle this? This is were some soft skills
may be required to persuade them to change their mind. Assuming we cannot
persuade them to change we need to plan and execute a migration from the
older solution to the new solution. Rather than avoid this sort of complexity
this course takes it head on.

This course is focussed on concepts rather than specific technologies. Yes,
we use specific tools but the aim is to understand the approach to DevOps,
learning how to confront and solve problems rather than simply ‘press this
button’, ‘put this value here’ type tutorials (again, yes, there is some of this sort
of material, especially early on, but the focus always remains on the concepts
involved not merely how to finish specific tasks). Following tutorials is fine but
generally we only learn one thing, how to do the one task in the tutorial. This
is of limited use. Learning the core idea behind the tutorial means you can
apply what is learned in novel circumstances.

For example, we use VirtualBox as our virtual machine hypervisor. What
if your organisation uses VMWare or Windows Hyper-V? No problem if you
understand the core concepts of virtualisation it should be a simple matter
of translating your knowledge to a new set of operations (figuring out which
menu items or commands get you the result you want). If you understand the
core concepts then you can figure out the button pressing parts by reading the

1

DRAFT

2 CHAPTER 1. HOW TO. . .

manual for the tool. Its like understanding variables in programming, once you
know what a variable is then figuring out variables in programming language
X is largely a matter of syntax.

Don’t have time to follow along from the start? Perhaps you already know
enough about networks and feel confident skipping that material. No problem.
At the start of each section you will find details of how to create an appropriate
environment for that section (see §1.3). These ‘checkpoints’ also mean that if
you mess up you can simply throw your environment away, recreate it using the
closest checkpoint and continue with the course. In fact I encourage you to mess
up your environment. You will learn much more by ‘playing’. So set up and
environment, mess around with your own ideas and then, when you are ready
to do the next part of the course, either restore your own saved snapshots or
tear down the environment and build a new one using the provided checkpoint
code.

If you are more interested in the philosophical and organisational aspect
of DevOps then take a look at this book’s companion Devops from Scratch
(Organisation)[Boo20a]

Having difficulty? No problem. Ask for help. Someone in the community
may help and since I am in the community I can also help clarify things. If
enough people are confused by the material then obviously I messed up and
need to rewrite that material to be more clear; it shall be done.

Other books are available with more detailed material. Trying to cover
all of the many complex topics under the IT System Lifecycle Management
rubric would make this book not only much larger but also less focussed. My
solution is to write books to deep-dive into related topics and reference those
books from this one where appropriate. This way I hope you will find all the
guidance you need either here or in one of the supporting books.

All of these books undergo constant maintenance (hopefully improvement),
my only goal is to make the material more clear and more accessible over time.

1.2 . . . get the most from this book

Firstly, forget DevOps. Seriously, ignore it. Although this book uses the term
DevOps (mostly for marketing reasons) it is really more general, it is about
how to do IT System Lifecycle Management more effectively. DevOps is a
distraction at worst and only a small part of successful IT System Lifecycle
Management at best.

Do the examples! You’ll get much more from the material by following
along and investigating for yourself.

1.3 . . .manage your workspace

We are going to be doing a lot of practical work throughout this book so it is
worthwhile considering how we will manage our workspace.

A lot of this section will only make sense once you have read about the tools
Git, VirtualBox, and Vagrant but I’m assembling basic advice here to make it
easier to refer back to later.

DRAFT

1.3. . . .MANAGE YOUR WORKSPACE 3

1.3.1 Initial setup of your workspace

If you follow this book from page one to the end you should find your workspace
is always in sync with whatever the book is dealing with but practically many
of you will jump to sections of particular interest, skipping many sections. An-
ticipating this I’ve put in plenty of checkpoints. All of the material (including
checkpoints) is held in a single Git repository, so I recommend getting that
first.

Assuming you have installed Git (see §2.4) you can create your project
workspace.

bash

1 mkdir dfs
2 cd dfs
3 git clone

https://gitlab.com/saltyvagrant.classes/dfs-material.git
C

C

4 mkdir classroom
5 mkdir archive

Your dfs workspace now contains three directories; dfs-material holds all
this books accompanying material, classroom is where you will follow along
with the course, and archive is where we will store various backup files.

Throughout this book I use the dfs directory as the root of your workspace.
Any path that does not explicitly start from the dfs root assumes you are
following instructions from the last checkpoint and are relative to whichever
directory you should be in at the time.

bash

1 cd dfs
2 cd dfs/classroom
3 cd ../dfs-material
4 cd dfs
5 cd classroom

Lines 1, 2, and 4 each start with dfs and are therefore not really relative to
your current working directory. You should take these to be absolute directories
rooted at your workspace root dfs.

Line 3 is relative you your current working directory (in this example
dfs/classroom) and is refering to dfs/dfs-material (since the parent of
dfs/classroom it dfs and dfs-material is to be found directly under this
directory).

Line 5 is again relative to your current working directory. As you just
moved to dfs (line 4) this refers to your classroom directory under that root.

1.3.2 Regular activities

There are a number of actions you may want to repeat throughout this course.
Rather than repeat them in full each time I present them here and simply refer
to these entries as necessary.

DRAFT

4 CHAPTER 1. HOW TO. . .

1.3.2.1 Snapshot Classroom

If you are following the advice given above and ‘playing’ with your classrooms
then I suggest your take a snapshot of your environment just before you start
to play. This way you can quickly reset your classroom back you a point where
it is ready for you to continue following along with this course.

1. Folllow along with this course.

2. Decide to ‘play’ for a while so take a snapshot.

bash

1 cd dfs/classroom
2 vagrant snapshot save class_<date>

Replace <date> with the date of the snapshot (I recommend using a
YYMMDD format as this sorts properly). For example, if today where De-
cember 3rd 2020 and I wanted to backup my classroom I would use the
following.

bash

1 cd dfs/classroom
2 vagrant snapshot save class_201203

3. Play with your classroom environment.

4. Decide to resume the course as described in this book.

5. Restore your classroom to the saved snapshot.

bash

1 cd dfs/classroom
2 vagrant snapshot restore class_<date>

Where <date> is the date of the snapshot to be restored. For example, to
restore the snapshot from December 3rd 2020 we created earlier I would
use the following.

bash

1 cd dfs/classroom
2 vagrant snapshot restore class_201203

6. Resume course.

One other useful snapshot command is list, this can be used to show your
previously saved snapshots (useful if, like me, your forget this sort of thing).

bash

1 cd dfs/classroom
2 vagrant snapshot list

DRAFT

1.3. . . .MANAGE YOUR WORKSPACE 5

1.3.2.2 Checkpoint Classroom

If you get lost in the material you can reset your classroom to one of the
checkpoints in the book. This will clean up you classroom directory ensuring
you are ready to proceed with the book’s follow-along lessons.

1. Shutdown any running classroom VMs

bash

1 cd dfs/classroom
2 vagrant halt

2. Backup your current classroom

bash

1 cd dfs
2 mv classroom archive/classroom_<date>

Replace <date> with the date of the backup (I recommend using a YYYMMDD
format as this sorts properly). For example, if today where December 3rd

2020 and I wanted to backup my classroom I would us the following1.

bash

1 cd dfs
2 mv classroom archive/classroom_20201203

3. Copy the relevant material from dfs-material

4. Start up the classroom

bash

1 vagrant up

This will start up any VMs required for the classes.

1.3.2.3 Update material

This book, and consequently the accompanying material, is continually being
updated2. You will want to periodically update your workspace to get these
updates, so here’s what I recommend you do just before you start any session.

bash

1 cd dfs/dfs-material
2 git pull

This will update the course material.

1Windows users should use move rather than mv
2If you have downloaded the PDF version of this book then you should download the

latest version at the same time you update the course material, otherwise they will get out
of sync.

DRAFT

6 CHAPTER 1. HOW TO. . .

What if this updates material I’ve already used? This should not cause
problems in most cases. However, occasionally I will make significant re-
visions to the book and consequently you may see larger changes than
usual. Assuming you are using the recommended workspace layout (see
§1.3.1), the checkpoint script can be used to test your current environ-
ment against the current checkpoint.

bash

1 cd dfs/classroom
2 vagrant ssh -c 'checkpoint verify'

Occasionally the checkpoint script will identify changes that requires
one of more VMs to be recreated. Since the checkpoint script runs
inside one of your classroom VMs it cannot preform operations on your
host computer. In these circumstances the script will provide instructions
to be run on your host to update your classroom.

If this verify fails there are two potential solutions.

1. Scrub your current classroom and return to the nearest checkpoint.

2. If the checkpoint verify can update your classroom it will of-
fer a ‘fix [y/N]?’ prompt. If you enter a ‘Y’ then the checkpoint
script will update your current classroom (and any VMs in that
classroom).

DRAFT
Chapter 2

Setting Up Your Environment

In order that we are all seeing the same environment as we progress through
the following material you will need to install three applications onto your
computer (the host computer):

• VirtualBox

• vagrant

• git

Let’s take a look at each and discuss why they are required.

2.1 VirtualBox

VirtualBox is Oracle’s virtual machine application. This allows us to run a
virtual (guest) machine on our host computer. This in turn means that even if
you are running, for example, a Windows PC you will be able to run the Linux
servers required to follow along with this material.

Virtualisation also isolates our host computer from the machines that we
use. This has the advantage that no matter how badly we mess up the virtual
environment it will have no effect on our host computer and any change to our
host computer will have no effect on the virtual machines1.

2.2 Vagrant

Vagrant is HashiCorp’s command line tool for managing virtual machines. Va-
grant provided a simple consistent method for defining virtual machines as
code. This means we can all easily set up the same virtual machine environ-
ment without the need to rely on following complex set up instructions.

As with many topics covered in this course, there is a more detailed book
covering Vagrant Vagrant from Scratch[Boo20e].

1This is not 100% true, but close enough for our purposes here.

7

https://virtualbox.org
https://vagrantup.com

DRAFT

8 CHAPTER 2. SETTING UP YOUR ENVIRONMENT

2.3 git

Git has become the de facto standard in version control tools. Git is a powerful
tool, unfortunately its history means it has a bloated command line interface
that is often daunting and confusing to newcomers. Fear not! We will initially
use git commands to obtain some files and nothing more (so you can just type
the commands with no need to understand them) but as we progress we will
explain the git command line and if you are interested in learning Git in detail
there is a complete book on the topic Git in Depth[Boo20b].

2.4 Installing the host tools

I have prepared some brief installation videos but to get the most up-to-date
instructions for installing these host tools follow the instructions on their web
sites.

DRAFT
Chapter 3

Our Starting Point

We installed the host tools for our technical ‘classroom’ in Chapter 2, now we
consider the environment in which our organisation works in a broader, softer
sense.

You are a start-up entrepreneur planning your new business. You want to
build a federated learning environment to provide online e-courses and allow
anyone else to also create their own courses. The idea is to bypass any cen-
tralised control by allowing anyone to create servers for hosting courses but
provide a coherent interface to users (so they see one ‘account’ regardless of
where the course itself is hosts).

Like all initial ideas you’re not entirely sure how to create this service but
you know that you will need to be able to create and tear-down experimental
systems. You’re also pretty sure you want to use cloud services to host your
system because this allows you to scale cost effectively.

You are a keen open source advocate, so not only will you use open source
solutions where possible you will also contribute back to the open source com-
munity. That said, you’re a pragmatist first, so you won’t rabidly pursue an
open source solution if a cost effective non-open source solution presents itself.

To keep initial costs down further you want to use your existing computers
where possible.

Initially you will be working from a home office, but recognise that you will
need more computing power than you own. Access to 24× 7 up-time and good
network availability will be important as you progress. You currently have a
laptop and an internet connection, and that’s pretty much it.

3.1 Ideation

The first step in any project is the formation of the idea.
When I first get an idea for a project it is either specific (these tend to be

smaller projects that are easily conceived as a single highly focussed idea) or
nebulous (these tend to be more aspirational, general, and poorly conceived at
the start). This project is the latter type.

The process of fleshing out these more general project ideas tends to be
cyclic.

1. Have idea

9

DRAFT

10 CHAPTER 3. OUR STARTING POINT

2. Use existing knowledge to formulate plan

3. Experiment

4. Evaluate

5. Refine

6. Discover new tools and techniques

7. Repeat steps 1–6

It is seldom as linear as this and rarely a smooth process, particularly for
larger projects where we are dealing with many people (and often many teams)
all with different perspectives on the project.. In my professional life I have
rarely worked on a large project that has been delivered as it was originally
conceived.

Author Note

Turn general notes into something more constructive.

DRAFT
Chapter 4

DevOps from 20,000 feet

This is the obligatory ‘what is DevOps’ chapter. The problem is DevOps has
been so abused as a term that it is largely useless but here goes.

The core idea of DevOps pre-dates the term DevOps, indeed at the start
of computing there was no significant distinction between user, developers, or
operators as users were also the developers and the operators. As comput-
ers matured from academic and military environments into more commercial
settings users split off into a clearly distinct group1. The people developing
systems also started to separate from the people operating the systems, partic-
ularly in the mainframe days where these vast machines required the constant
attention of operators who loaded punched cards and paper tape, and removed
printouts for delivery to developers or users. The advent of Teletype terminals
and subsequently video display terminals made it possible for user to interact
with systems blissfully ignorant of the operators behind the scenes. Similarly
developers became increasingly independent of the operators, able to write,
compile, and run their creations independent of the operators keeping things
running behind the scenes.

Once developers had completed their work they would hand over the fin-
ished product to operators who would then take over the loading and opera-
tion of the system on behalf of users. This generally worked well in the early
days simply because both developers and operators worked within the same
organisation. The increased commodification of software though increased the
distance between developer and operator. Indeed operators would often take
a software product and install it knowing only that it was an IBM product,
never knowing or interacting with the developer. Because this gap developed
between commercial suppliers of software and those who operated the systems
delivering value to customers so too there tended to be an increasing gap be-
tween developers and operators even within a single organisation; why have one
rule for operators when working with an external supplier and another when
working with internal developers?

This divorce between developers and operators made a certain sense when
delivering packages software, that is software that was a simple stand-alone
system. Developers had little concern about working well with others. The
operating system ensured the various programs running on the computer were
separated from one another so operators had few concerns. Products tended to

1Yes, I am massively over simplifying things here, but I think the point stands.

11

DRAFT

12 CHAPTER 4. DEVOPS FROM 20,000 FEET

go through long life-cycles and this allowed for extensive testing (and testing
was somewhat simpler as the software operated largely on its own).

This situation did not last long though. Increased complexity meant in-
creased specialisation and consequently increased interaction between compo-
nents of a system. No longer would a development team write a system largely
from scratch but they would take various commercial products and build them
into a system. Each building block would be treated as a black-box and devel-
opment teams where hostage to the delivery cycle of the vendor to fix problems
(resulting in code being developed by these teams to ‘work around’ perceived
deficiencies in the commercial packages).

Long story short, the increased complexity of systems also increased the
complexity of delivering systems from development teams into operation. No
longer a simple ‘here it is’ the delivery became a complex set of operations
the install various off-the-shelf systems, configure them, then install the cus-
tom components, test they worked, etc. All this complexity resulted in either
longer delivery times (and wicked documents describing—hopefully—how the
installation should be performed), or more commonly development projects
would build out the first operational system and deliver the entire system to
the operations team (saving the complexity of delivering build instructions to
operators). This second approach often became the norm.

Maintaining development teams after the initial system was delivered starts
to become expensive as more and more systems are delivered. Consequently it
is common for operations teams to take over maintenance of systems. Problems
arise when knowledge held by the developers evaporates with the development
team, seldom being effectively communicated to the operations team. This
leads to poor understanding of the system and consequently a struggle to di-
agnose and correct problems.

This problem is exacerbated by the advent of systems supporting web based
products and services. The rapid development and delivery of these systems
means constant rapid change.

Enter DevOps, a call to return to a culture in which developer and opera-
tors work closely together in both developing and maintaining systems. DevOps
philosophy complements the Agile movement which encourages close work be-
tween users and developers.

DevOps is about creating as frictionless a cycle as possible for the develop-
ment, validation, delivery, and monitoring of systems.

4.1 The DevOps Infinite Cycle

No doubt you’ve come across the DevOps steps illustrated as a sort of infinity
symbols. This suggests that DevOps is an endless cycles of these steps.

• Plan

• Code

• Build

• Test

• Release

DRAFT

4.1. THE DEVOPS INFINITE CYCLE 13

• Deploy

• Operate

• Monitor

As an IT professional you will find yourself in this cycle and more impor-
tantly you will often be problem solving in the middle of this cycle. It is a
luxury to be neatly involved from the planning stage onward and even under
these ideal circumstances you will soon find yourself troubleshooting through-
out the process. This is the attraction of being a generalist!

DRAFT

DRAFT
Chapter 5

Virtualisation

There was a time when virtualisation was considered a rather exotic solution
for IT systems but nowadays it is considered essential.

In Chapter 2 we installed VirtualBox Oracle’s virtualisation tool. We will
be using VirtualBox for all our virtualisation. We also installed Vagrant a
handy tool from HashiCorp that simplifies the programmatic definition of our
local virtual machines. In this chapter we look at creating a virtual server both
manually and using Vagrant.

5.1 Creating a Virtual Server with VBoxManage

VBoxManage is the Command Line Interface (CLI)1 to VirtualBox. I am using
the CLI rather than the more common Graphical User Interface (GUI)2,3 for
two reasons:

1. Education; using the CLI discloses more about how a VM is put together
in VirtualBox, this leads to a better understanding of virtualisation.

2. System as Code; a central tenet of the technical aspects of DevOps is the
system as code. Graphical interfaces are not easy to handle programmat-
ically whereas a CLI is ideal for scripting.

Readers interested in more detail of virtualisation and VirtualBox specifi-
cally may find VirtualBox from Scratch[Boo20f] useful.

5.2 Setting up a simple virtual machine

Let’s create our first virtual machine.

1Application interface using the computers command shell.
2User interface using a visual desktop metaphor.
3If you are interested in using the VirtualBox GUI there are plenty of examples online.

15

https://googlethatforyou.com?q=yt%3A%20VirtualBox%20gui%20create%20vm

DRAFT

16 CHAPTER 5. VIRTUALISATION

Host operating system

The following commands should work on MacOS, Linux, or Windows
10a

aAssuming you have a recently up-to-date Windows 10 installation.

First create a directory within which we will create our virtual machine and
make this our current working directory.

bash

1 mkdir vbclass
2 cd vbclass

Now open a command line terminal and download the installation media
we need to build our server. Since we are building a Debian server we download
a Debian installation ISO.

bash

1 curl -O
https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/\

C

C

2 debian-10.9.0-amd64-netinst.iso -L

curl is generally available as a default command line tool nowadays but
you may need to install it on your host (or just download the ISO via your
browser).

Now we run a series of VBoxManage commands to setup the virtual hardware
for out virtual machine.

bash

1 VBoxManage createvm --name "vbdemo" --register
--basefolder "$(pwd)"

C

C

2 VBoxManage createhd --filename vbdemo/vbdemo.vdi --size
20000

C

C

3 VBoxManage storagectl "vbdemo" --name "SATA Controller"
--add sata

C

C

4 VBoxManage storageattach "vbdemo" --storagectl "SATA
Controller" --port 0 --device 0 --type hdd --medium
vbdemo/vbdemo.vdi

C

C
C

C

5 VBoxManage storageattach "vbdemo" --storagectl "SATA
Controller" --port 1 --device 0 --type dvddrive --medium
./debian-10.9.0-amd64-netinst.iso

C

C
C

C

6 VBoxManage modifyvm "vbdemo" --memory 8192
7 VBoxManage modifyvm "vbdemo" --nic1 bridged

--bridgeadapter1 en1
C

C

8 VBoxManage modifyvm "vbdemo" --ostype Debian

We start by creating the base VM settings file and registering the VM
with the VirtualBox library (line 1). The settings file is an XML file called
vbdemo.vbox in a vbdemo subdirectory for the current working directory. You

DRAFT

5.2. SETTING UP A SIMPLE VIRTUAL MACHINE 17

will also notice that looking in the VirtualBox library that the new VM is
registered.

Once this base VM settings file is available we can start adding custom
hardware to our virtual machine.

Line 2 creates a virtual disk 20GB in size in the same directory as the
settings file. This new disk is empty when created.

Line 3 creates a SATA storage controller in our new VM and then lines 3 and
4 associate disks with this controller. Line 3 associates the virtual disk we just
created in line 2 and line 4 associates the Debian installation ISO downloaded
previously. Line 4 is the equivalent of loading a Debian installation CD into a
CD drive attached to the virtual machine (note the --type dvddrive option
on line 4).

Line 5 gives our memory a boost to 8GB, you may need to modify this to
suit your host machine (it’s generally a bad idea to assign more virtual memory
to a virtual machine than you have physical memory on your host machine).

Line 6 configures a network interface card (nic) on the virtual machine. In
this set up we are simply creating a bridged network interface, which means
the virtual machine will we network device en1 as if it were attached to your
local network.

Line 7 tells VirtualBox to expect a Debian operating system on this virtual
machine.

After running these commands we have the following situation.

• A directory containing a virtual machine setting file (vbdemo/vbdemo.vbox)
and a virtual disk (vbdemo/vbdemo.vdi).

• The settings file has been modified so that the virtual machine:

– has 8 GB RAM
– a SATA controler with two drives attached:

∗ the virtual 20GB hard drive (vbdemo/vbdemo.vdi)
∗ a DVD drive containing the Debian installer (\nolinkurl{./debian-10.6.0-amd64-netinst.iso})

– a network interface card (en1) ‘wired’ to your host computer’s net-
work

When we start this virtual machine the hardware will present as specified
in the settings file and, as the hard drive has nothing installed on it, the system
will boot from the virtual DVD drive, beginning the Debian installer.

Start the virtual machine.

bash

1 VBoxHeadless --startvm "vbdemo" &

This will start the virtual machine ‘headless’, without a virtual display at-
tached. This may seem odd, but in future we will access our virtual machines
through SSH so none of the machines will be configured to use a display other
than its console. This is the situation you are most likely to encounter profes-
sionally.

Every machine has a console. The console is a screen and keyboard directly
attached to the machine. In a data centre these screens and keyboards are

DRAFT

18 CHAPTER 5. VIRTUALISATION

typically physical devices installed into the racks holding the servers and they
are used by data centre personnel to monitor and control servers in the rack.
Data centres are also commonly configured to allow remote access to consoles
in addition to the physical console devices, saving personnel from needing to
enter the physical data centre to access the console. In virtual environments
(such as ours) the console is accessed virtually.

• Using the VirtualBox library GUI.

• Using the Remote Desktop Protocol (RDP)4 which VirtualBox makes
available on port 3389.

Once on the virtual machine’s console you will see the Debian installer
and you can walk through the installation steps as you would for a physical
machine.

At the end of the installation you will be prompted to remove the instal-
lation CD and reboot. The Debian installation ISO mounted in the virtual
DVD drive will be automatically ‘ejected’ as the virtual machine reboots, so
just select to reboot the virtual machine and you will see for virtual machine
restart into a Debian console prompting you for the username and password to
login.

5.3 And now the easy way

We just set up a Debian server manually using the VirtualBox CLI. This is
useful to learn the nuts and bolts behind setting up a virtual machine and
using a CLI means we could put these commands into a script file and run
them whenever we wanted to create a new machine.

We have not discussed how to automate the installation of Debian itself,
this is a topic dealt with in Packer from Scratch[Boo20c], but we don’t need to
consider this now as we’re going to turn our attention to the use of Vagrant.

5.3.1 Introduction to Vagrant

Vagrant is a command line tool for managing virtual machines5.
Hang on? Isn’t that what VirtualBox does?
No. VirtualBox provides the facility to run virtual machines, Vagrant man-

ages virtual machines.
Vagrant is capable of managing virtual machines running on several differ-

ent virtualisation tools; VirtualBox, VMWare, and Hyper-V being the main
ones used to run virtual machines on a local host. In Vagrant terminology
these virtualisation tools are ‘providers’. Vagrant has a plugin architecture,
so developers are free to create their own provider if the existing ones are
unsuitable.

Another key concept to Vagrant is the ‘box’. A box is a packaged up base
virtual machine that is used by Vagrant to provide one or more virtual machines
to your project.

4A network display protocol developed by Microsoft.
5We are using Vagrant as a tool in this book but I have written another book dealing

with Vargant in more detail, Vagrant from Scratch[Boo20e]

DRAFT

5.3. AND NOW THE EASY WAY 19

Let’s start defining a Vagrant system. This system will consist of a single
virtual machine. We base our virtual machine on a box supplied by the bento
project6. Since we started out with a Debian server above let’s continue and
set up a Debian server using Vagrant.

To create a Vagrant managed virtual machine we need to write a Vagrantfile.
A Vagrantfile is a configuration file used by Vagrant, written in Ruby (a fact
that we will exploit later when defining more complex Vagrant setups).

Vagrant can create a Vagrantfile for us as a starting point. This is helpful
when starting out but I’m sure you will soon find this template unnecessary,
even irritating because of all the comment lines it contains. That said, let’s
create our first Vagrantfile using Vagrant.

bash

1 mkdir myvagrant
2 cd myvagrant
3 vagrant init bento/debian-10

Simple as that, the init command instructs Vagrant to initialise a Vagrantfile
such that it specifies a virtual machine based on the bento/debian-10 box.

Where does Vagrant find these boxes? By default they are hosted on the
HashiCorp Vagrant Cloud server.

Before taking a look at the Vagrantfile let’s start our virtual machine.

bash

1 vagrant up

You should now see Vagrant downloading the bento/debian-10 base box,
make a clone copy for our project, and start up the new virtual machine. At the
end of all this we have a running machine but we are returned to our command
line prompt.

As with our manually constructed virtual machine the Vagrant machine is
started headless7. We access our new virtual machine using SSH, fortunately
Vagrant makes this trivial by supplying the vagrant ssh command.

bash

1 vagrant ssh

You should be immediately connected to the Debian virtual machine we
just created. Your command line prompt while on this virtual server will be
vagrant@debian-10:~\$

To leave the server (but have it remain running) simply logout.

bash

1 exit

6The bento project is run by the people who develop the Chef configuration management
system. I have found these boxes to be quite sound for my needs.

7Virtual machines can be started with a display, but we almost exclusively want headless
servers, so Vagrant’s default behaviour is ideal.

https://github.com/chef/bento
https://github.com/chef/bento
https://app.vagrantup.com/boxes/search

DRAFT

20 CHAPTER 5. VIRTUALISATION

You will be returned to your host computer’s command prompt.

DRAFT
Chapter 6

Infrastructure as Code

Central to our approach is the idea of infrastrcture as code. What does this
mean?

Hopefully we are all familiar with the fact that underlying the websites,
applications, databases and other software in our charge is code. This code is
transformed by other software (typically a compiler or interpreter) into a form
that is ultimately executed under the management of an operating system (an-
other piece of software). This code is, at least in well run modern environments,
held in a version control system.

It seems peculiar then that all of the surrounding configuration, setup, and
monitoring necessary for maintaining a system should be recorded in documents
that are followed and maintained (hopefully consistently and accurately) by
engineers. This never works!

This problem is solved by replacing the documentation and manual execu-
tion with code that is executed by software designed to manage infrastructure.
This may seem odd, sending software to look after software, but bear with me.

Using code to manage our system also provides other significant advan-
tages; it is repeatable, and it can be put into version control. This may seem
like a slight thing after all the manual documentation can be put under version
control too. The difference is the repeatability. With the best will in the world
humans suck at writing and following documentation. This is a combination of
the document being unclear or incomplete and the engineer following the docu-
ment interpreting it incorrectly or, with the best of intentions, ‘correcting’ the
document as it is being implemented (often without updating the document).

We have removed the human element between writing the system specifi-
cation and its implementation. Any problems with the interpretation of the
infrastructure code can be corrected and the code re-run until the problems
are resolved. In other words our infrastructure becomes subject to a cycle of
debugging, just like software. Our objective, if it is not already obvious, is
to produce instructions that can be executed without human intervention in a
repeatable manner such that we can create or recreate our infrastructure.

Another often overlooked advantage of this infrastructure as code is speed.
Anyone who has been involved in the manual deployment of a system will
know it is not only error-prone (consequently one is never sure one has the
system as specified) but it is also slow, painfully slow, and labour intensive.
Infrastructure as code is front loaded, meaning most effort is invested at the

21

DRAFT

22 CHAPTER 6. INFRASTRUCTURE AS CODE

beginning of the project. Once at the point of deployment it (ideally) is a push-
button deployment. It can still take hours to deploy a system from scratch,
but compared to the days or weeks involved in a manual deployment this is
not a long time.

6.1 Less Talk, More Do!

Complexity ahead!

Although the steps to setup this ‘first server’ are trivial the material
explaining how this setup works is more complex and you may need to
come back to it after reading more of the book. I have tried to keep is
simple (both in implementation and description) but some of you may
feel overwhelmed. DON’T PANIC! If you have trouble just skip ahead
and come back when you’ve learned more.

Setup to Follow Along

If you have not done so already, setup according to §1.3.1 and, if you
need to archive any current class files §1.3.2.2.

bash

1 cd dfs

On Mac/Linux:

bash

1 cp -r dfs-material/dfs040cp010 classroom

On Windows:

bash

1 xcopy dfs-material\dfs040cp010 classroom /E

All Platforms:

bash

1 cd classroom
2 vagrant up

Although this may take a while to run I think we can agree that it’s simple
enough1?

You have just created a web server with simple static website, set up a basic
firewall, and run some smoke tests on the server to ensure basic functionality.

1If you have something already occupying port 35555 on your host computer you will get
an error message from Vagrant that the port cannot be mapped. In this case edit Vagrantfile
and change the line website_port=35555, changing 35555 to a free port

DRAFT

6.1. LESS TALK, MORE DO! 23

Furthermore, the system you end up with will be functionally the same2 as
mine. We have a repeatable process.

On your host computer, open aWeb browser and access http://localhost:
35555. This should display the home page of our sample website.

That process illustrates just part of the power of infrastructure as code.
Let’s take a look at this example.

Before we take that closer look. . .

• This is a simple example. Only one server is created the ‘system’
it implements is simple and the tests are all run locally.

• This is a very simple configuration, no attempt has been made to
make this ‘production ready’.

• Tests are far from exhaustive and intended as a simple illustration.

• In the following discussion I am not presenting all of the details,
just the highlights. The rest of this book will flesh out the details,
how the various tools are used, and more importantly it will offer
guidance on how to approach solving some of the problems we
encounter in DevOps.

6.1.1 The source

The first thing to note is that the entire ‘specification’ for this system is held
under version control in a Git repository. Any problems detected with the
system would be corrected in this repository and then redeployed from there
(more on this later). No modification would be made to this system directly
(by, for example, someone logging on to the system directly)3.

This idea that our servers should be ‘untouched by human hands’ is perhaps
the most foreign idea for most people. We are so used to logging on to servers
to diagnose and fix problems that being told this is no longer the way to work
is often greeted with ‘how can we possibly support our customers this way?’
Not only is this possible it is essential.

6.1.2 The Vagrantfile

This file tells the vagrant software how to create and initialise our server.
This Vagrantfile is the highest level of our local system specification but

contains very little of the actual server configuration. This is deliberate. We
want as much of the configuration to be reusable in different contexts; building
a physical server, building a cloud server, as well as building a local Vagrant
server.

2I say ‘functionally’ because there may be some variation in specific versions of some
packages installed. For example, although we have fixed the version of the Python pytest
package this may in turn install dependencies and these may be limited to a range of versions
rather than one specific version. Whether this lack of precision is important is context
dependent.

3Strictly, of course, in this simple example we are logging on the server to run the salt
and git commands, but that’s all and we could run these remotely if we wanted

http://localhost:35555
http://localhost:35555

DRAFT

24 CHAPTER 6. INFRASTRUCTURE AS CODE

To this end we include in the Vagrantfile only those elements peculiar to
setting up a Vagrant server. Notably, the line that create a grains file for the
salt configuration:

Vagrantfile

15 config.vm.provision "shell", inline: "mkdir -p /etc/salt;
[-f /etc/salt/grains] || echo 'is_vagrant: True' >
/etc/salt/grains ; sed -i -e
'/^is_vagrant/{s/is_vagrant:.*/is_vagrant:
True/;:a;n;ba;q}' -e '$ais_vagrant: True'
/etc/salt/grains"

C

C
C

C
C

C
C

C
C

C

This is broken into two parts. The first creates the grains file if it does
not exist:

bash

1 mkdir -p /etc/salt; [-f /etc/salt/grains] || echo
'is_vagrant: True' > /etc/salt/grains ;

C

C

The second is redundant when the provisioner is first run, it is included in
case the provisioners are re-run. This second line ensures that the is_vagrant
grain is set correctly.

bash

1 sed -i -e '/^is_vagrant/{s/is_vagrant:.*/is_vagrant:
True/;:a;n;ba;q}' -e '$ais_vagrant: True'
/etc/salt/grains

C

C
C

C

This line tells Salt that this server is a Vagrant managed server. This
is required so we can make adjustments to the server configuration. In this
instance we ensure that the firewall allows ssh connections. We could have used
other features of the server (such as the existence of the vagrant user account)
but attempting to ‘fingerprint’ the server like this is prone to all manner of
difficulties (what if someone creates a server with a vagrant account). Being
explicit using a grain like this is better.

6.1.2.1 Salt provisioner

Given that the Vagrant Salt provisioner can be used to perform a similar func-
tion to the provisioning script described in §6.1.3, why not use it? In general
I want my provisioning method to be portable so that I can use the same pro-
visioner to build a ‘real’ server (physical or virtual) that I use to build the
development and test server. This flexibility is denied us if we lock ourselves
in using a Vagrant specific provisioner configuration.

Does this mean I would never use the Vagrant provided salt provisioner?
Not at all. As I said, ‘it depends’. I would use it if I knew that the machine
being specified was uniquely a Vagrant machine, or when I knew that everything
in my specification can be provided by a salt state.highstate. I’ll describe
some of the issues I see with the current setup in §6.1.3.

https://www.vagrantup.com/docs/provisioning/salt

DRAFT

6.1. LESS TALK, MORE DO! 25

6.1.3 The provisioning script

The provisioning/build script is a simple beast that replicates much of the
Vagrant salt provisioner.

Installing git allows us to pull the formulas for iptables and nginx. I
could have installed the salt configuration and then invoked a state that in-
stalled the formulas before using state.highstate to complete the machine
setup, but that seems unnecessary and does not eliminate the need for a script4.

Issue: I have not specified the versions of these formula to be used. Instead
we simply pull the ‘latest’ available. For a non-critical system this is fine but
as we will see this may not be appropriate to your project.

Next the script installs salt using the bootstrap-script provided by Salt-
Stack. This is essentially what the Vagrant Salt provisioner would do too.

Then, the salt configuration is put in place and the Salt minion config-
uration (again, Vagrant will do these tasks too but relying on the Vagrant
provisioner locks the solution into Vagrant while this script can be run on any
Debian base system).

Finally we run salt to assert the highstate, this completes the setup of the
machine.

Having set up the server we now deploy the website. To keep things simple
this is a static web site and is controlled as source in a Git repository. The
website is not deployed using salt but it could be.

Now that everything is deployed we can run some smoke tests. To do this
I simply run the infratests held alongside the configuration.

Issue: I prefer to have tests hosted on an external server even if they are
run locally but in a single server system such as we’ve just created that is not
practicable.

6.1.4 Salt configuration

The majority of the ‘hard work’ of setting up the server is done by salt. We
cover Salt configuration in more detail as we work through this book (and in
much more detail in Saltstack from Scratch[Boo20d]), here I will just outline
briefly the components used in this example.

Salt’s configuration is provided in two parts:

states These specify the desired state of our server, they are held under
/srv/salt (custom states) and /srv/formula (standardised states)5.

pillar Files under /srv/pillar provide data which is subsequently used when
processing states.

This configuration is made of of three parts:

• Standard tools

• Firewall

4I could also have set up a Git file system—discussed in detail in [Boo20d]—but I think
the current approach is simpler for new users.

5The custom/standard distinction is my own, but I think characterises the difference
well.

DRAFT

26 CHAPTER 6. INFRASTRUCTURE AS CODE

• Nginx

Standard tools installs Git and Tree. We gave installed Git already in the
provisioning script, but this install specifies the version of Git that we consider
correct. This ensures our server has a consistent configuration.

The firewall is set up using the Linux net filter using the iptables tool.
Nginx is the tool that will server our website.

6.2 What about the data?

There is an obvious gap in our system rebuild; data.
We can build our server simply enough as outlined in the previous section,

but what about the data we enter? Admittedly, not an issue in our simple
example (beyond treating the web site as standing data) but certainly an issue
in general.

There are different classes of data controlled and generated by our system.
Broadly we can consider three classes of data:

• Transient—this is data that we can generally afford to lose. Or, more
accurately, its loss has little impact on our business. I include in this
classification things like log files6.

• Standing—this is data that changes seldom if at all. An example might
be the tax rate applied on our shopping website.

• Dynamic—this is what most people consider ‘data’. This is all the in-
formation we capture that, if lost, would have a material effect on our
business.

The management of data is a complex topic and we will discuss it at length
in Chapter 14.

6The exception to this being in regulated environments where log file data often forms
part of audit data and consequently becomes of significant value and consequently is treated
as dynamic data.

DRAFT
Chapter 7

The Master Server

In building our system we need to start somewhere. It is tempting to start
with a development environment but we will instead start by building a server
to provide some basic facilities.

• A version control repository—into which all our sources will be placed

• A ‘bug’ tracker—to keep track of issues and defects.

• A build system—a ‘doer of things’ to automate the transformation of
source into product and ultimately to build our infrastructure.

Although I said we will be starting by building server rather than a devel-
opment environment we will still be creating a virtual server for development
and testing.

7.1 Preliminaries

If you have not done so already, get the material for this book to make it easier
to follow along (see §1.3.1)

7.2 Base server and operating system

The master server will be an x86 machine with 8GB RAM, 4 cores, and 250GB
SSD1. Onto this hardware we will install the Debian operating system. At
the time of writing the latest stable version of the Debian operating system is
Debian-10 codenamed ‘Buster’.

The Vagrantfile for our base server will therefore look like this;

1You might be thinking, “that’s a pretty weird specification for a server!” And you’re
right. It just happens to be the specification of a spare machine I have lying around (recall,
we’re working with what we have available.)

27

DRAFT

28 CHAPTER 7. THE MASTER SERVER

Vagrantfile

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :
3

4 Vagrant.configure("2") do |config|
5 config.vm.box = "bento/debian-10"
6 config.vm.box_version = "202010.24.0"
7 config.vm.provider "virtualbox" do |vb|
8 vb.memory=8192
9 vb.cpus=4

10 end
11 end

Try it now. Create a new directory, move into that directory, create a new
Vagrantfile and enter the content above, save the file and then vagrant up.
You should end up with a new Virtualbox server set up with the Debian oper-
ating system installed.

The keen-eyed amongst you will have noticed that there is no mention in
this Vagrantfile of disk size. The Vagrant box will provide the initial system
disk, changing this size of this disk involves more than a simple directive in
the Vagrantfile. For now we will live with the disk provided and address this
issue if the need arises.

Another key feature of this Vagrantfile is the config.vm.version line.
This ‘locks’ our configuration to a specific version of the base box. This ensures
that any configuration work we do after this is building on a known starting
configuration. It also means that anyone using our Vagrantfile is sure to also
deal with the correct starting point.

If we omit line 6 then Vagrant will use the latest bento/debian-10 available
on the Vagrant Cloud box catalogue. As we develop our initial solution this may
be an option we want to use, but as soon as we are to share our configuration
with others providing the version is important.

‘Locking’ our version like this is important for consistency later but has an
associated downside. As our configuration ages this version of the Vagrant box
becomes increasingly out of date with respect to the Debian releases. We can
deal with these issues in a number of ways, among them the following.

• Review and update the ‘locked’ version of the box periodically.

• Build our own custom Vagrant box.

• Update the Vagrant VM as part of our subsequent configuration.

Each of these has pros and cons and we will consider each later. This ‘lock’
versus ‘free’ version issue will be a recurring one. For now we have a potentially
more serious issue to deal with, the Vagrant box we rely upon is hosted on the
Vagrant box catalogue hosted by HashiCorp and there is no guarantee that
this box will remain available indefinitely. Worse, we have no control over that
box’s availability, the Chef team or HashiCorp may choose to deprecate it.
This raises a general issue; we should, so far as practicable, make copies of all
resources we rely upon such that we can maintain direct control over them.

https://app.vagrantup.com/boxes/search

DRAFT

7.3. VAGRANT SSH 29

For the box it would simply mean cloning the bento/debian-10 box into our
own Vagrant box catalogue and then using this local Vagrant box catalogue as
our primary source. Since we do not currently have such a catalogue we should
add this to our backlog.

It is also important to emphasise that our development and test configura-
tion is based on a virtual machine configuration suitable for use with Vagrant
on our desktop machine, it is not necessarily a precise match with the base
configuration we will have on our target system. How should we deal with
this? One obvious solution is to carefully control matters such that these dif-
ferences are eliminated. Another, perhaps more pragmatic, approach for our
purposes here is to test for the important features that we must have in our
base configuration and to make our configuration appropriately adaptable. We
will investigate these options as we proceed.

For practical purposes part of the Vagrant specification for a box requires
that an SSH server be provided to allow Vagrant to communicate with the
VM to both provide access (via vagrant ssh) and for further configuration,
to which we now turn our attention.

While Vagrant requires SSH access we will likely not install SSH access on
the majority of our ‘real’ servers. So, one of the major discrepancies we have
between our Vagrant development and test system, and our formal test and
production system is the presence of SSH. We can minimize the impact of this
discrepancy by severely limiting access to SSH. We will address this shortly.

Vagrant boxes will generally not have much security by default. This is by
design. Vagrant is intended primarily as a development tool and is not suitable
for controlling or deploying production systems, consequently you will find that
most generic Vagrant boxes, such as bento/debian-10, are fairly ‘bare bones’,
consisting of a largely default installation. However we want our local system
to reflect our formal test and production environments as closely as practicable.
We will secure our servers as much as is practicable given the aforementioned
Vagrant requirements.

7.3 Vagrant SSH

Vagrant boxes set up SSH with a non-privileged user account vagrant. The
vagrant account is configured for both password (also vagrant) access and a
public/private key pair is preloaded to allow Vagrant SSH access to the server
without the need for messy password integrations.

The upshot of this setup is that Vagrant controlled servers are inherently
insecure by default as the username/password pair (vagrant/vagrant) is com-
mon knowledge and the SSH key pair used is also publicly available (and com-
mon to all default Vagrant setups).

The normal use-case for Vagrant renders this insecurity moot because we
would not normally make these machines accessible outside our host computer
and certainly not on a public network. The difference is significant to our
current setup because as we secure our server we need to ensure access to the
vagrant account via SSH so that Vagrant continues to work.

We could secure our Vagrant setup further by changing the public/private
keys used and changing the vagrant account password, but frankly this is
overkill for our purposes. Our Vagrant systems are intended only for use in

https://saltyvagrant.com/2020/12/07/why-not-install-ssh-on-every-server
https://saltyvagrant.com/2020/12/07/why-not-install-ssh-on-every-server

DRAFT

30 CHAPTER 7. THE MASTER SERVER

development on individual host computers, which should themselves have host
firewalls preventing unwanted network access to the Vagrant systems.

The most important thing we need to do though is isolate, so far as practica-
ble, any Vagrant specific configuration such that it does not interfere adversely
with our development. In other words, we want to avoid making assumptions
that are only applicable in our development Vagrant environment. Since our
users (developers) may be unaware of these issues, we need to isolate them as
far as practicable as part of our configuration.

7.3.1 Vagrant provisioning

As our first step in configuration let’s do something simple. We will need the
Git system installed on our new server so this is a good simple thing for use to
install.

Modify your Vagrantfile, inserting the config.vm.provision instruc-
tion.

Vagrantfile

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :
3

4 Vagrant.configure("2") do |config|
5 config.vm.box = "bento/debian-10"
6 config.vm.box_version = "202010.24.0"
7 config.vm.provider "virtualbox" do |vb|
8 vb.memory=8192
9 vb.cpus=4

10 end
11 config.vm.provision "shell", inline: "apt install -y

git"
C

C

12 end

The new line (11) instructs Vagrant to use its SSH connection to run the
shell command apt install -y git on the guest operating system (our new
server).

By default Vagrant will run all such provisioning shell commands sudo, that
is with elevated ‘super user’ privileges. (The vagrant account is an unprivileged
account but is configured as a sudo user, see sudo users.)

Assuming you still have your Vagrant VM running from earlier, you can
have vagrant ‘re-provision’ the VM rather than needing to destroy it and start
over. On your host computer, while in the same directory as the Vagrantfile2.

bash

1 vagrant up --provision

By default (without the --provision option) vagrant up will start a
halted or suspended Vagrant VM without running any provision entries. With

2Technically you can be in the same directory as Vagrantfile or any of it’s sub-
directories, but that’s a lot to type every time.

https://saltyvagrant.com/2020/12/10/sudo-users

DRAFT

7.3. VAGRANT SSH 31

the --provision option the VM is started (if halted or suspended) and any
provision commands in the Vagrantfile are run.

In our example the inline shell command apt install -y git will be run
and the Git package will be installed on the VM.

If the VM is already running, that is not halted or suspended, the provision
entries in the Vagrantfile are still run against the running VM.

If the VM does not exist (it has not been previously created with vagrant up
or it has been destroyed with vagrant destroy) then the VM will be created
as normal and the provision entries will be run as part of the creation of the
VM.

This simple approach to configuring our VM seem okay for simple things
but has one major problem, it is not portable. Suppose we want to apply
this configuration to another server, one not controlled by Vagrant. We would
need to somehow extract all the config.vm.provision directives to apply the
relevant configuration. Not very practical.

What we need to do is decouple the configuration actions from the Vagrant
mechanism that invokes those actions.

7.3.2 Vagrant provision by script

Modify your Vagrantfile again, replacing the config.vm.provision direc-
tive.

Vagrantfile

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :
3

4 Vagrant.configure("2") do |config|
5 config.vm.box = "bento/debian-10"
6 config.vm.box_version = "202010.24.0"
7 config.vm.provider "virtualbox" do |vb|
8 vb.memory=8192
9 vb.cpus=4

10 end
11 config.vm.provision "file", source:

"scripts/configure", destination: "/tmp/configure"
C

C

12 config.vm.provision "shell", inline: "sh
/tmp/configure""

C

C

13 end

We have added line 11 to copy a file (scripts/configure) from the host
computer to the VM (into /tmp/configure).

Line 12 then executes the configure script on the VM.
Next we need to create the configure script. On the host computer, in the

directory containing the Vagrantfile.

bash

1 mkdir scripts
2 vi scripts/configure

DRAFT

32 CHAPTER 7. THE MASTER SERVER

Use whatever your preferred text editor is (I’m using vi here).
Enter the following into the configure file.

configure

1 #!/usr/bin/env bash
2 # vi :set ft=bash:
3

4 set -euo pipefail
5

6 apt install -y git

The first line ensures that Linux invokes the correct interpreter when none
is specified. The second line is a ‘mode’ line telling vi that this is a bash script
(not important if you do not use vi, but I do so adding this mode line is habit
for me). Line 4 ensures the script fails early and hard if it has any errors (not
strictly useful in such a short script, but a good habit to acquire).

Line 6 is the important line and reproduces the install of the Git package.
This may all seem rather overkill, and it is for such a trivial example, but it

illustrates an important principal. Moving our configuration instructions into
script means we can copy that script to any system we want to configure and
run it. This configuration is now independent of Vagrant, relying solely on
Linux script interpreters. The only parts of our configuration process that are
tied to Vagrant are the provision directive, these contain no configuration
information other than which script to upload and run for this particular VM.

7.4 What versus How

Notice that our configuration is really a script detailing ‘how’ to impose our
configuration. To use this configuration we need to know some things about
our target system. For example, we need to know that the system supports
installation of packages using apt, and we need the system to run bash shell
scripts.

The second requirements (the need to run bash) could be a simple prereq-
uisite, we are using bash as our configuration tool. The former though is more
questionable.

What if I want to run this configuration on an Arch based distribution?
These distributions use pacman rather than apt. What about on RedHat dis-
tributions where dnf is preferred?

The issue is this; my configuration is really saying ‘I want to ensure Git
is available’. This requirement is independent of the underlying operating
system or distribution or that operating system. All I really want is to have
Git available after I have applied my configuration.

Configuration management tends, therefore, to be based on a declarative
system. The configuration is a statement of ‘what’ should be true on the system
if it is configured correctly. The configuration manager is unconcerned with
‘how’ the configuration is asserted and only concerned ‘that’ it is asserted. In
other words, I don’t care about which installation method is used to install Git
I only care that once my configuration is applied Git is available.

DRAFT

7.4. WHAT VERSUS HOW 33

In a trivial sense my script could be something like the following (if you’re
following along there is no need to make these changes, I’m just illustrating a
point).

configure

1 #!/usr/bin/env bash
2 # vi :set ft=bash:
3

4 . config-tool.sh
5

6 set -euo pipefail
7

8 git-installed

Our configuration now just states ‘after running this configuration the sys-
tem must have git-installed’, or put another way, ‘any system that meets
the requirements of this configuration must have git-installed’. All of the
detail about how the configuration tool should verify that Git is in fact in-
stalled or how if should be installed if it is not already, is irrelevant to the
configuration itself.

A naive implementation of config-tool.sh might look something like the
following.

DRAFT

34 CHAPTER 7. THE MASTER SERVER

config-tool.sh

1 #!/usr/bin/env bash
2 # vi :set ft=bash:
3

4 set -euo pipefail
5

6

7 # Figure out package tool
8 PKG=""
9 for pm in "apt dnf pacman"; do

10 if command -v "${pm}"; then
11 PKG="${pm}"
12 break
13 fi
14 done
15

16 git-installed () {
17 # If git IS installed, we're done
18 command -v git && return
19

20 # Otherwise try to install it
21 case "${PKG}" in
22 "apt")
23 apt -y install git
24 ;;
25 "dnf")
26 dnf -y install git
27 ;;
28 "pacman")
29 pacman --sync --noconfirm git
30 ;;
31 *)
32 echo "No package manager found" >2
33 exit 1
34 esac
35 }

Obviously this script is deficient in many ways (not being very generalised,
not accounting for different package names, not covering many distributions,
not handling errors, etc.) but in principle it allows us to say git-installed
(the thing we want to be true) in our configuration and leave all the messy
details (of how to make it true) to be figured out by the configuration tool.

As you might imagine, we are not going to be writing our own configuration
management system!

7.5 Our core configuration tool

In the previous section we converted our initial configuration steps into a Bash
script. This decouples our initial configuration from a Vagrant specific format

DRAFT

7.5. OUR CORE CONFIGURATION TOOL 35

(the Vagrantfile) and places it into a more portable form that can be used to
provision not ony Vagrant machines but also cloud servers or physical machines.
This has the benefit of making our configuration something defined independent
of the underlying implementation of our server.

We also showed the separation of the configuration from how to acheive
that configuration. This is an important abstraction allowing us to focus on
‘what’ our system should look like rather than ‘how’ to make our system look
the way we want. (This is obviously an ideal and reality being the complex
mess it is seldom this clean cut in real life. But, hey, that’s what we’re here to
learn about!)

The Bash script is certainly a move in the right direction and there will be
many more such scripts required to set up our servers, but Bash scripts are
tough to get right and are seldom concise in expressing all the minor variations
required when configuring multiple servers. Fortunately there are specialised
tools for managing our server configurations.

There are many tools to choose from in the configuration management
space. Which you choose may depend on a number of factors.

• Does your team already have experience using a particular tool? This
could result in a default decision based on current experience, the tool
may be adopted because people are comfortable using it, or rejected be-
cause of past problems with the tool.

• Does your team have deep knowledge of a particular language? This can
influence tool choice because particular tools are written using, or are
designed to integrate with, specific languages. For example Puppet is
Ruby based, while Saltstack is Python based.

• Cost.

• Supported platforms.

• Legacy configuration. Either a need to adopt existing configuration or to
migrate from a legacy configuration.

We will use Saltstack for the following reasons:

• It is freely available.

• It is based on Python and Python is pretty much the defacto standard
scripting language on Linux (and is preinstalled on most Debian instal-
lations, including this bento/debian-10).

• It is so much more than a configuration management tool, it can be used
for monitoring and self-healing of systems, features we will use much later
in this course.

• It has tools for deploying cloud servers, which we will use later in this
course.

• It can be used standalone, over SSH, or as a full bus-oriented master/min-
ion system. These options are discussed briefly in later sections and more
fully in Saltstack from Scratch[Boo20d].

https://puppet.com
https://saltstack.com

DRAFT

36 CHAPTER 7. THE MASTER SERVER

7.5.1 Installing Salt

We have seen how trivial installing a Debian package can be when we installed
Git. Debian repositories do have a set of Salt packages but they tend to be
older versions of Salt and we would prefer to have a more recent version (and
have the option to keep our systems up-to-date with the latest releases), so we
will not be using the Debian package repository version.

Fortunately SaltStack provide a shell script for installing various SaltStack
components. In a similar approach to that used in §7.3.2 we can provide the
SaltStack script and run it to install the Salt components we require. We will
start with a naive implementation and gradual refine it into a more robust
implementation, along with discussion of each refinement.

Edit the Vagrantfile.

Vagrantfile

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :
3

4 Vagrant.configure("2") do |config|
5 config.vm.box = "bento/debian-10"
6 config.vm.box_version = "202010.24.0"
7 config.vm.provider "virtualbox" do |vb|
8 vb.memory=8192
9 vb.cpus=4

10 end
11 config.vm.provision "file", source:

"scripts/configure", destination: "/tmp/configure"
C

C

12 config.vm.provision "shell", inline: "sh
/tmp/configure""

C

C

13 config.vm.provision shell, inline: "cd /tmp && curl -o
bootstrap-salt.sh -L https://bootstrap.saltstack.com &&
sh bootstrap-salt.sh -M git master"

C

C
C

C

14 end

We are adding just one line (line 13) but it’s doing a lot of work. There are
three commands to be run; change to the /tmp directory, download (curl) the
script from the SaltStack website, and finally run that script.

As before we can run this additional provision line using the --provision
option. On your host computer, in the same directory as the Vagrantfile.

bash

1 vagrant up --provision

This run will take some time as the Salt installation script does a lot of
work for us.

While it works, let’s consider what we just did (and why it’s not a partic-
ularly good approach).

We downloaded a script from the internet and ran is into our VM without
any checks. This is a security risk on two levels; the source of the script (the
bootstrap.saltstack.com website) could have been compromised and the

DRAFT

7.5. OUR CORE CONFIGURATION TOOL 37

script could have been tampered with, secondly, we have no idea what the
script is actually doing, where is it sourcing the installation from, what (if any)
precautions are taken to ensure the script installs the proper files.

This level of trust may be okay for our ‘quick and dirty’ development envi-
ronment, but they are unacceptable for a production environment.

In Chapter 13 we discuss repositories in more detail but for now we should
note that sourcing directly from a public website is a security risk. Whether
we consider it a reasonable risk comes down to our risk tolerance (see §11.1.1)
and this will vary according to context (we may accept more risk in an isolated
development environment but less in a live production environment).

The first step in reducing our risk is simple in principle, we download the
script to a local file system, review it, and then use this reviewed copy as the
source for our configuration. Simple in principle, more complex in practice.
Performing such a review is a non-trivial exercise. It is important that this
process results in a controlled copy of the script that can be used for delivery
but also for comparison when updates to the upstream (original source) are
made.

Furthermore, in this case the script itself refers to other repository objects
and if we are to be highly risk averse these must also be vetted and local
repositories used. Chapter 13 discussed these observations in more detail, for
now we will set most of them aside in order to progress with our configuration
work (rest assured though, we will return to this issue).

7.5.2 Additional Salt setup

The current Salt setup will not work!
Salt, as installed, is running a Master/Minion setup where each Minion

controls a target configuration (in this case the new VM) and the Master coor-
dinates a set of Minions. In order for Minions to find the appropriate Master
they use a DNS lookup. By default the Minion will look for the domain name
salt.

The Master and Minion are running as two services on the VM. We can
view their current state using systemctl.

bash

1 systemctl status salt-master
2 systemctl status salt-minion

You will see that the Minion has failed to start, this is because we have not
yet configured a domain name salt, so the Minion will be unable to find the
Master (even though it happens in this case to be the same VM).

To fix this we need to define a domain name salt that the Minion can find
and resolve, and then we need to restart the Minion so that is can find and
connect to the Master.

To fix this quickly we can add a line to our /etc/hosts file to resolve
domain name salt to the VM itself. As the Master and Minion are running
on the same VM we can use the local loopback device lo, this has the IP

DRAFT

38 CHAPTER 7. THE MASTER SERVER

Address 127.0.0.1 (this IP Address is a standard ‘this machine’ IP address3).
We could simple edit our /etc/hosts file, but this would be useless to anyone
building this VM from our Vagrantfile in the future. Following the principals
of infrastructure as code, this change must be written into our configuration.
The modification to the /etc/hosts should exist before we install Salt so that
it is available before the Minion tries to find the Master for the first time. The
obvious place to do this in our current configuration is the configure script
we started earlier.

configure

1 #!/usr/bin/env bash
2 # vi :set ft=bash:
3

4 set -euo pipefail
5

6 apt install -y git sed
7

8 sed -i -e '/[[:space:]]salt\([[:space:]]\|$\)/ {:l;n;bl}'
-e '/localhost/ s/$/ salt/' /etc/hosts

C

C

sed is a fairly standard Linux tool available in most distributions (it is
available in the bento/debian-10 box already). So, why add it to the install
on line 6? This is a precaution. If our configure script is run on a distribution
that does not have sed installed we want to ensure that it is installed before
trying to use it on line 8. If Git or sed are already installed attempting to
install them a second time will not cause any error.

Line 8 needs some explaination. This is the line that adds salt as a domain
name. It may be tempting to try something line echo "127.0.0.1 salt" >> /etc/hosts
to append a suitable line to the /etc/hosts file. But consider what this would
do if the configure script were run multiple times (as it has been already).
Every run would add another 127.0.0.1 salt line to our /etc/hosts file.
Not good.

The more complex sed command avoids this problem. The salt domain
name is added only if no suitable entry already exists.

This idea that the script should result in the same output each time is called
‘idempotence’. A fancy word meaning ‘repeated application without change to
the result beyond the first run’. Put another way, any idempotent operation
has the same result on our system as the first time we run it.

Our configuration is not entirely idempotent yet. If we run this repeatedly
there is a possibilty of different results for the following reasons.

• apt install will install the latest available version of each package, so
if either Git or sed packages are updated in the repository between runs
then the version installed on our VM will be upgraded; our configuration
results in different versions of these packages being installed, breaking
idempotence.

3Technically the address block 127.0.0.0/8 is reserved for loopback addresses ([see CVH13,
table 4])

DRAFT

7.5. OUR CORE CONFIGURATION TOOL 39

• We have not specified a specific version to the Salt installation script.
As with the packages this may result in the Salt version changing if the
source repository is updated between our runs of the isntallation script.

The bootstrap-salt.sh and configure scripts can be combined into one
script by adding the call to the bootstrap-salt.sh into the configure script,
then remove the config.vm.provision line that calls this script from the
Vagrantfile. As a final bit of cleanup for this version we change the name
of the configure script to bootstrap-masterserver. The resulting files are
shown next.

bootstrap-masterserver

1 #!/usr/bin/env bash
2 # vi :set ft=bash:
3

4 set -euo pipefail
5

6 apt install -y git sed
7

8 sed -i -e '/[[:space:]]salt\([[:space:]]\|$\)/ {:l;n;bl}'
-e '/localhost/ s/$/ salt/' /etc/hosts

C

C

9

10 pushd /tmp
11 curl -o bootstrap-salt.sh -L

https://bootstrap.saltstack.com
C

C

12 sh bootstrap-salt.sh -M git master
13 popd

Vagrantfile

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :
3

4 Vagrant.configure("2") do |config|
5 config.vm.box = "bento/debian-10"
6 config.vm.box_version = "202010.24.0"
7 config.vm.provider "virtualbox" do |vb|
8 vb.memory=8192
9 vb.cpus=4

10 end
11 config.vm.provision "file", source:

"scripts/bootstrap-masterserver", destination:
"/tmp/bootstrap-masterserver"

C

C
C

C

12 config.vm.provision "shell", inline: "sh
/tmp/bootstrap-masterserver"

C

C

13 end

We now have one clean script to take a base Linux (Debian) install and add
in basic tools to facilitate our full configuration.

DRAFT

40 CHAPTER 7. THE MASTER SERVER

On the plus side, this script is simple enough that it can be modified for
alternate base systems without much difficulty and it does so little that debug-
ging it, should the need arise, will be trivial.

On the downside, we are reliant on bootstrap-salt.sh which, while not
catastrophic, leaves us open to some risks. We are currently pulling the latest
version direct from SaltStack’s server which means it could change without
warning, it also means any compromise to this script or the SaltStack domain
could compromise any server built from this bootstrap-masterserver script.
For now I think these risks are within my comfort zone so let us proceed.

7.6 Something is missing?

The eagle-eyed amongst you will have noticed a significant omission from our
progress so far. Requirements. Well, more specifically we’ve dived in to build-
ing our system and no one has laid out exactly what we are trying to build.
Sure we have some vague notion of what we’re aiming at but most projects
produce depressing reams of requirements before a line of code is written, let
alone building any support infrastructure.

The odd thing is that, at least in my experience, these project require-
ments seldom cover basic project infrastructure. There tends to be an implicit
assumption that the project team will just build ‘stuff’ they need. Most of
the time this seems to work. . .More or less. Often these support infrastructure
elements are an invisible cost to the project. A ‘build manager’ or even ‘build
team’ (the title varies) will spend many hours tending the support elements,
fixing problems as they arise, building out additional capacity, rebuilding bro-
ken systems, etc. Without any requirements it is impossible for the project to
assess whether needs are being met in an efficient manner, and so any associated
cost is absorbed into the ‘build team’ overhead.

Does this mean we should spend an age developing details requirements?
No. But it does seem odd that there is a tendency for teams to promote the
short life cycle, rapid feedback, Agile approach to customers but fails to adopt
the same standards for the internal systems.

Let’s fix that.

DRAFT
Chapter 8

Master Server
Requirements—round one

Author Note

This is early draft material, barely more than a stream of consciousness
and notes.

We will take a more general look at requirements in Chapter 9. Before
diving into requirements we should first think about why we want them. We
start with a need, usually in the form of a problem, usually a problem blocking
progress toward some goal. In our current situation;

• “The master server must have Salt installed”

• “We want SSH installed so we can log on in order to control the Salt
master”

These are questionable requirements as they specify technical solutions.
However this is to be expected in a technical domain. Arguably we could step
back and express the first requirement as “I need a way to manage the system
configuration”, but this feels unnecessary at this point.

Before finalizing these requirements though we have others to satisfy;

• “I need to store documents”

• “I need to be able to identify specific versions of documents”

• “I need to be able to build and test versions of the system”

• “I need to be able to control different environments”

In other words our project needs some document management before any-
thing else.

From these high level “needs” we need to derive requirements specific enough
that our development team can implement them. This is a rather vague state-
ment, but necessarily so because the amount of effort required will vary ac-
cording to circumstance.

41

DRAFT

42 CHAPTER 8. MASTER SERVER REQUIREMENTS—ROUND ONE

If we are specifying requirements internally (developer specifying the build
system for use by the development team, for example) then we need to invest
less effort than if we were writing requirements between different organisations
or parts of the business (the marketing department writing requirements for a
new campaign management system to be implemented by an external develop-
ment agency).

8.1 What are requirements for?

For now, let’s limit ourselves to basic technical requirements. Why write re-
quirements?

Short answer; communication.
Requirements communicate information between the person who needs some-

thing to the person providing that something. Ideally this communication is
unambiguous and complete. That is, the provider never asks the questions,
‘what exactly does this requirement mean?’ or ‘what else do you need?’. Nor
does the requester feel the need to ask, “can we just add. . . ”

As you might imagine this means requirements vary considerably in their
complexity. On a one man project it is common for no requirements to be
written. There is no communication problem, as both the requester and the
provider are the same person the requirements can change without notice,
there is no need to be specific, there is no problem of ambiguity (or at least
the resolution of ambiguity are simple).

On a project with multiple participants the need for clear, durable commu-
nication increase in proportion to the number of participants. One requester
and one provider can likely be dealt with informally. Projects tend to be small
and communication can be as regular and close as the two participants desire.
Once several requesters are involved it becomes essential for the provider to
ensure that there is consensus among the requesters. Failing to do so is almost
certain to degenerate into chaos as disagreements among requesters drive the
provider mad as they pull in different directions.

These communications are compounded further when multiple providers
are involved (exponentially so when those providers work in different organisa-
tions).

Communication operates over space and time so although it may seem
pointless to document requirements when only two or three people are involved
remember that in future you may be dealing with more people (not to mention
the future selves of the original participants). These ‘future participants’ may
benefit greatly from well documented requirements (not to mention the history
of decisions made in reaching those requirements).

If you’re working in a team these requirements help to ensure everyone is
working to achieve the same result. I think of requirements as guiding lines
that specify the essential properties of the system. Within this specification
we have plenty of room to be creative but when all is said and done we must
meet this specification before all else. These requirements help ensure we are
not wasting resources on unnecessary activity.

I want to stress here that looking back on these requirements we may see
violations. This is because requirements change. It is likely that the require-
ments the project has now will change as the project progresses, so we expect

DRAFT

8.2. USES OF REQUIREMENTS 43

the system to sometimes violate these early requirements. This is not a failure
on our part, it is simply the way the world works; you cannot see beyond the
horizon.

Right now our project needs:

1. A central repository for our:

• changes (issues etc.),

• documentation,

• code, and

• configuration.

2. A means of deploying configuration (build out of machines, ensuring those
machines remain consistent with project needs, etc.)

The central repository does not have to be one repository, but should be
accessible to all members of the project team.

The current requirements are all technical and focussed on the system de-
velopment support system. There is a low communication barrier between
the customer and the development team (they are basically the same in this
context).

We are fortunate that we have no operational constraints at the moment. If
we had an operational environment to think about we would need to account
for this in our requirements. Perhaps taking in documentation and instruc-
tions about how to deliver into production, starting the liaison with operations
(getting suitable representatives from operations on the project to ensure that
whatever we intend to deliver will be acceptable).

8.2 Uses of requirements

Beyond their function as an aid to communication requirements have other
functions.

8.2.1 Requirements as contract elements

Requirements often form a part of a contract for delivery. This often leads
to people insisting on the need for a ‘complete’ set of requirements (and the
resulting interminable, and often flawed, requirements phase). After all, if the
requirements are not established in excruciating detail beforehand, how can we
price up and control the project?

Quite simply you cannot, but then again, even with these painfully acquired
detailed upfront requirements, most projects

citation needed fail to deliver. Why? Because requirements change, es-
pecially in light of experience. Also, people are better at telling you what is
wrong with the delivered system than they are imagining what they need up
front.

Which is more productive? Do something quick and realise it’s wrong,
correct course, repeat. Or, spend months trying to get things perfect, develop
something based on the wrong requirement, deliver something that does not
meet the user’s needs but damn it meets the requirements. This was realised

DRAFT

44 CHAPTER 8. MASTER SERVER REQUIREMENTS—ROUND ONE

long before computers were created; models, proofs, and prototypes are all
attempts to provide customers with something concrete to evaluate and critique
before committing to expensive production runs. While these prototypes etc.
where intended to be disposed off current IT development encourages continual
refinement; taking each product and refining it through a deliberate process
(in Agile approaches this is the often misunderstood1 ‘refactoring’ process).

8.3 How to capture our requirements

The majority of our requirements will be technical. Our users being technical
too. That said we will have plenty of non-technical people too; programme
office team, often project management is non-technical (or at least not deeply
technical). There will also be plenty of people who require information from
your project (or providing to your project) that will not be technical; customer,
users, human resources, etc.

For now we are focussed on the project internals.
There are myriad ways to capture and control requirements from simple

text files to dedicated software management systems. You may be compelled
to use a specific solution (company standards) but for this project we have free
rein. Guided by the idea of maintaining simplicity until we need to make things
complex we will start with text files. If future demands require that we use
a more complex system for managing our requirements we should be able to
reformat them relatively easily (generally I find it easier to move from simpler
formats to more complex).

Eliciting and decomposing requirements is a skill unto itself (just take a look
at the may books on the topic; search for ‘requirements’ or ‘business analyst’).
But we’ll have a stab at a simplified version.

There are a few things we can be fairly sure about. We need a way to store
documentation (including these requirements). The documentation needs to
be accessible. Members of the project need to be able to read and update
documents. We want to be able to track the history of these documents. We
need to be certain that documentation is controlled and accurately identified.
I prefer a layered approach to document control.

• Latest release.

• Current draft

• Version control repository

The latest release is the document from which the project must work. It is
read only and published for everyone to access.

The current draft is a utility so that the author can access the document.
This copy is only required for non-technical authors who cannot (or will not)
use the version control repository. This copy may be unnecessary in many
projects but my experience has been that it is often a fruitless task to try to
get everyone using a version control tool when they have been used to using a
shared file system.

1I say ‘misunderstood’ because too many fail to treat refactoring as a definite step, instead
muddling it it with development of new features.

DRAFT

8.4. STARTING A CONVERSATION 45

The version control repository holds the complete history of all documen-
tation on the project. Depending on the tool used and the nature of your
project or organisation you may need to have more than one repository. Some
documents may be confidential or restricted. It may be unacceptable to your
organisation for these documents to be at risk of exposure (even to other team
members—examples include contract and other legal documents, details bud-
gets and costs). My opinion is that project documentation should be release
as permissively as possible.

To be clear, the version control repository need not be a specific tool. It
is possible to hold all documentation in a set of directories, using file name
conventions to maintain a version history.

You should be realising at this point that our requirements need not, and
arguably should not, say anything about the final solution (exception being
where such a solution is externally imposed).

8.4 Starting a conversation

The core to eliciting good requirements is having good conversations.
This is the function of ‘stories’ in the Agile method. Stories are a useful

formalisation of conversations between requesters and producers.
Once these conversations, and consequently the associated stories, are ma-

ture enough (notice, not ‘complete’, they are never really complete), we are
ready to formalise these stories into requirements. (On projects where Agile is
being fully implemented—a customer advocate is on hand—the story may be
appropriate as a requirement.)

This is an oft repeated error. Stories are generally not good requirements!
They are close, but win no cigar. A story will typically yield more than one
requirement. Not all requirements will have a story, but some requirements
may lead to a story being generated if the development team need to clarify
something (this clarification may lead to yet more requirements).

Stories have acceptance criteria, these are the closest to requirements.

8.4.1 Traceability—sexy!

Before we get too far into this let’s talk about traceability. One of the problems
faced by a project of any size is traceability. How do we know that we have
done the right thing and that we have done everything asked for and only the
things asked for2?

For any given piece of the final system I want to be able to say, ‘this feature
was requested in requirement xyz ’. If I cannot answer this basic question then
why does this feature exist? Why did we expend resources to create it? Why
did we adopt the cost of maintaining it?

All the cycling through requirements and stories in §8.4 leads to a history
for requirements, this is another dimension of traceability.

If you work in a regulated environment you will find a need to maintain
detailed audit-able traceable records. Generally, the more regulated your en-
vironment the stricter your traceability requirements. That said, regardless of
any external requirements your project will benefit from effective traceability.

2Delivering more than requested means we are ‘giving away’ project resources.

DRAFT

46 CHAPTER 8. MASTER SERVER REQUIREMENTS—ROUND ONE

Traceability requires that we clearly and unambiguously identify each project
asset. Identity schemes are an extended topic, there are as many schemes as
there are projects (or so it often seems).

8.5 Testable requirements

Requirements must be testable. Some guidance suggests requirements must be
SMART (Specific, Measurable, Attainable, Realistic, and Testable and Trace-
able). I suggest this is a reasonable guideline but, as with most advice, you
need to intelligently apply this guidance. Remember, guidance is not law.

We can test manually or automatically; automatic testing is vastly prefer-
able for the simple reason that automatic tests are more likely to be run and
run more frequently.

8.5.1 Features versus design

Ousterhout [Ous19] suggests that Test Driven Development (TDD)3 is harm-
ful because it results in ‘tactical’ development rather that ‘strategic’ design
decisions. This largely depends on how you interpret TDD. If you treat TDD
as automated specification verification then it’s efficacy depends on the spec-
ification. If you specify (requirements) at a design level then TDD will work
well. It is true that, as presented by most advocates, TDD will result in tech-
nical solutions. I’m also sympathetic to Ousterhout’s promotion of design over
features.

8.5.2 Test automation

If we can write tests to confirm our requirements have been met, and then auto-
mate those tests, we are golden. These automated tests can be run repeatedly
as our project moves forward, acting as a ratchet, preventing any backsliding.

8.5.3 Tests we cannot automate

Some requirements cannot be automated, or it may be impractical to automate
them. For example, aesthetic design requirements are often subtle and a matter
of opinion. They are important, but practical impossible to automate. Even if
we somehow establish a baseline (say record the GUI and save this as a ‘gold
standard’, then replay the tests and compare the result to this gold standard.
Fine, but even a light change to the GUI will throw this comparison out and
we will have to manually assess a new gold standard. Repeat this too often
and the automation of tests start to lose its usefulness.).

Although we may not be able to perform a test automatically it is worth-
while setting things up so that test results are confirmed automatically (making
this confirmation a condition of passing the product). For example, we could
maintain a spreadsheet where each line holds a manual test and next to that
test the latest result, we can then write a utility to ‘test’ that all the result
fields are ‘pass’ before declaring the product ready for the next phase.

3A development methodology in which tests are written before the implementation code.

DRAFT
Chapter 9

Requirements

Author Note

This is early draft material, barely more than a stream of consciousness
and notes.

Time, mind, and space.
Mind to mind versus mind model mismatch.
The trick is to balance all these factors against available resources.
There is no mileage in spending time developing too specific requirements,

but too general requirements will result in wasted downstream effort.

Ambiguity

Specification

Use Case

User Story

Idea

Requirements

M
ore

cost

Figure 9.1: The requirements funnel

Requirements communicate the customer’s needs, wants, and desires to the
developers.

Requirements are always expressed in the language of the customer, the
‘domain language’.

Language is slippery, it is easy for misunderstandings to happen even under
the best conditions. We maintain a glossary for all terms used in our require-
ments, this is the definitive record of meaning in our project.

47

DRAFT

48 CHAPTER 9. REQUIREMENTS

All IT systems

CMS systems

CMS with GUI

Target CMS system

Figure 9.2: The design space

Requirements need to be specific enough that the development team can
deliver the requirements in a timely and accurate manner. This obviously
means the level of detail will depend on the relationship between the devel-
opment team and the customer. When the customer and developer are close,
for example working side by side, the documented requirements can be less
specific1.

Requirements are constraints in the ‘space of possible systems’ Figure 9.2.

1Assuming there are no external project drivers, such as regulations.

DRAFT
Chapter 10

Testing First

10.1 The Purpose of Testing

There are several reasons to perform testing:

• Check that requirements/specification has been met.

• Exercise solutions to try to break them.

• Continuously evaluate solutions to ensure we don’t regress.

Each of these can be sub-divided into:

Functional Testing what the code does.

Non-functional Testing how the code does it (such as how fast it performs,
the user experience, etc.)

49

DRAFT

DRAFT
Chapter 11

Security First

11.1 Risk

11.1.1 Risk tolerance

51

DRAFT

DRAFT
Chapter 12

Firewall

Now that we have our configuration management system in place we can start
defining our configuration.

The first task is to start securing our server. Security should always be
defined as restrictive (most secure) first and then only relaxed enough to allow
key functions required for the system to operate.

On our final system this currently means, for the master server, that some
users will require access to drive Salt (initiating Salt operations) and Salt itself
needs network access for communication between the Salt Master and any
Minions we define.

On our development system we have the additional SSH requirements for
Vargant to work, as noted in §7.3.

Given these two slight differences our configuration must account for en-
vironmental differences. Environments are first class concepts in Salt so we
will look at the Salt environment system, but I don’t think this system is all
that helpful and prefer another approach, which I investigate more fully as we
proceed.

With that said let’s look at our first configuration the server’s host firewall.

12.1 What is a firewall?

Any computer attached to a network is vulnerable to attack. A firewall is just
one of the tools available to protect a network and the computers on it.

Broadly speaking firewalls come in three types:

Network firewalls These are typically dedicated network devices placed at
key points in a network to protect parts of that network, often between
untrusted and trusted networks (e.g. your company network and the
internet).

Host firewalls These are software that runs on a computer and typically pro-
tect that machine only.

Application firewalls These are software, or subsystems, that control input
and output of specific applications or services running on a host computer.

It is possible to have hybrid computers that act as both an network firewall,
protecting whole or part of a network, but running other software too.

53

DRAFT

54 CHAPTER 12. FIREWALL

12.2 What does a firewall do?

In general a firewall inspects every network packet passing through it and,
based on the ’firewall rules’, determine what to do with that packet; drop it,
accept it, mark it, pass it to the destination, pass it for further processing, and
so on.

DRAFT
Chapter 13

Repositories

55

DRAFT

DRAFT
Chapter 14

Managing Data

57

DRAFT

DRAFT
Bibliography

[CVH13] M Cotton, A Vegoda, and B Haberman. Ed. by R Bonica. 2013. url:
https://tools.ietf.org/html/rfc6890 (visited on 12/13/2020).

[Ous19] John Ousterhout. A Philosophy of Software Design. Yaknyam Press,
Palo Alto, CA, Jan. 2019.

[Boo20a] Mark Bools. Devops from Scratch (Organisation). From Scratch.
2020. url: https://saltyvagrant.com/books/devops- org/
devops.html.

[Boo20b] Mark Bools. Git in Depth. From Scratch. 2020. url: https://
saltyvagrant.com/books/git/git.html.

[Boo20c] Mark Bools. Packer from Scratch. From Scratch. 2020. url: https:
//saltyvagrant.com/books/packer/packer.html.

[Boo20d] Mark Bools. Saltstack from Scratch. From Scratch. 2020. url: https:
//saltyvagrant.com/books/salt/salt.html.

[Boo20e] Mark Bools. Vagrant from Scratch. From Scratch. 2020. url: https:
//saltyvagrant.com/books/vagrant/vagrant.html.

[Boo20f] Mark Bools. VirtualBox from Scratch. From Scratch. 2020. url:
https://saltyvagrant.com/books/virtualbox/virtualbox.
html.

59

https://tools.ietf.org/html/rfc6890
https://saltyvagrant.com/books/devops-org/devops.html
https://saltyvagrant.com/books/devops-org/devops.html
https://saltyvagrant.com/books/git/git.html
https://saltyvagrant.com/books/git/git.html
https://saltyvagrant.com/books/packer/packer.html
https://saltyvagrant.com/books/packer/packer.html
https://saltyvagrant.com/books/salt/salt.html
https://saltyvagrant.com/books/salt/salt.html
https://saltyvagrant.com/books/vagrant/vagrant.html
https://saltyvagrant.com/books/vagrant/vagrant.html
https://saltyvagrant.com/books/virtualbox/virtualbox.html
https://saltyvagrant.com/books/virtualbox/virtualbox.html

DRAFT

DRAFT
A Brief History of “devops”

61

DRAFT

DRAFT
Index

vagrant, 7
virtualbox, 7

63

	Contents
	How to…
	…read this book
	…get the most from this book
	…manage your workspace

	Setting Up Your Environment
	VirtualBox
	Vagrant
	git
	Installing the host tools

	Our Starting Point
	Ideation

	DevOps from 20,000 feet
	The DevOps Infinite Cycle

	Virtualisation
	Creating a Virtual Server with VBoxManage
	Setting up a simple virtual machine
	And now the easy way

	Infrastructure as Code
	Less Talk, More Do!
	What about the data?

	The Master Server
	Preliminaries
	Base server and operating system
	Vagrant SSH
	What versus How
	Our core configuration tool
	Something is missing?

	Master Server Requirements—round one
	What are requirements for?
	Uses of requirements
	How to capture our requirements
	Starting a conversation
	Testable requirements

	Requirements
	Testing First
	The Purpose of Testing

	Security First
	Risk

	Firewall
	What is a firewall?
	What does a firewall do?

	Repositories
	Managing Data
	Bibliography
	A Brief History of ``devops''
	Index

